
Gedae: Auto Coding to a Virtual Machine

William I. Lundgren, Kerry B. Barnes, and James W. Steed
Gedae, Inc.

Phone: 856-231-4458
Email Addresses: {bill.lundgren, kerry.barnes, jim}@gedae.com

Gedae is an integrated application development
environment. It has been under development
since 1987 – though the concepts involved are
rooted in much earlier work done in the areas of
data flow and hardware simulation. In Gedae
we have developed a language for describing an
architecture-independent functional
specification, a virtual machine on which the
application runs, and transformations that create
an efficient implementation of the application
that runs on the virtual machine. In this paper we
discuss three topics – the language, the virtual
machine and the transformations.

The language was developed with two
requirements – any functionality must be easily
expressible, and the language must be
transformable into an efficient implementation
on the virtual machine. The Gedae Language
consists of both the Gedae Primitive Language
and the Gedae Graph Language. Much of the
expressiveness is in the primitive description
language. The language has over 50 expression
features to define the behavior of functional
ports. Port data flow requirements can be
specified either prior to runtime (static) or at
runtime (dynamic). Ports can add segment
boundary markers on the data flow streams,
thereby breaking the stream into independent
data sets. Exclusive families of ports can send
data down one branch or another to implement
mode changes while maintaining coherent state
vectors used by all the modes. Primitives can
maintain their own local state variables and
provide methods for execution, startup,
termination and handling the beginning and
ending of segment processing. The Gedae
Graph Language allows the hierarchical
development of graphs consisting of primitives,
parameters and other Gedae graphs. The graph
language can describe families of these entities
to allow parameterized expression of
parallelism. The resulting language permits

Implementation
Specification

100+ Transformations

Runtime Kernel

Vi
rtu

al

M
ac

hi
ne

Vendor Components

Multiprocessor Hardware

The Structure of Gedae

Functional
Specification

Application Implementation

User

Vendor

Gedae

G
ed

ae

direct expression of signal and data processing
algorithms, distribution for providing load
balancing and fault tolerance, and application (or
software, or mode) control.

To achieve efficiency, the language and virtual
machine were codesigned. The virtual machine
contains a runtime kernel that executes
components generated by the transformations.
For example, the static scheduler executes
predetermined execution sequences based on
static data flow ports, and the dynamic scheduler
executes groups of static schedules that interface
through dynamic data flow ports. The virtual
machine manages the segment processing and
controls the efficient and timely transfer of
distributed state vectors between processors.
The virtual machine also allows for vendor
specific optimizations of processing, such as,
setting data transfer parameters. A thin layer

mailto:jim}@gedae.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Gedae: Auto Coding to a Virtual Machine

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Gedae, Inc.

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

over the vendor-provide vector processing
libraries allows primitives to execute efficiently.

One of the unique features of Gedae is the
visibility of the implementation and the
execution it provides. This visibility is possible
because the language, the transformations and
the virtual machine are all part of Gedae. The
visibility allows the generation of detailed
execution timelines and the symbolic viewing of
any memory in the system. Primitive execution,
queue state and data transfers between
processors can be dynamically viewed when the
application is running.

 The transformations are the central part of
Gedae and make possible the efficient execution
of the application expressed in the Gedae
Language on the Gedae Virtual Machine. The
transformations are fully automated but can be
guided by user supplied implementation
parameters to control distribution, strip mining,
data transfers, scheduling priorities (both static
and dynamic), queue policies and memory
management. Some of the transformations
directly modify the graph into an equivalent
graph to implement a user entered
implementation decision. For the user to
distribute a graph, the user specifies a
partitioning of the graph and a mapping of the
graph to individual processors. Gedae modifies
the graph by inserting send and receive
primitives that run on the separate processors
and maintain the data flow and connectivity of
the graph. The user does not have to modify the
graph to achieve these results.

For example, the following graph has dynamic
queues and is distributed to four processors by
the user:

 Branch

 Mode1

 Merge

 State
Machine

Software A

 Mode3 F

 Mode2 D
 Mode2 E

B
C

It is transformed into a new graph, as seen
below, with send and receive boxes inserted to
manage communications and dynamic queues
also inserted to handle dynamic data flow
boundaries. Other transformations include
modifying the graph to implement strip mining
of vectors, adding primitives to implement
delay, and adding primitives to allow
communication of the graph to the host program
or to other Gedae applications. Data structures
are also created to implement segmentation,
mode control and distributed state coherency.

A sonar signal processing graph will be used to
demonstrate how a graph is transformed into an
implementation. It will be shown how the
transformations can be used to modify the graph
execution without changing the Gedae Language
expression of the graph. The resulting
implementations will be contrasted with how the
same implementations would be achieved using
traditional programming techniques.

 Branch

 Mode1

 State
Machine

Transformed Graph

A

 Mode3 F

 Mode2 D

 Mode2 E

B
C q s r s

q s r

q s r

q s r

r

s r

s r

s r

s r

s r

s r q

q

q

q

 Merge

Gedae, Inc.
www.gedae.com

HPEC 2004

Gedae: Auto Coding to a
Virtual Machine

Authors: William I. Lundgren,
Kerry B. Barnes, James W. Steed

Gedae, Inc.
www.gedae.com

What is Gedae?

Gedae is a block diagram language ...

Branch

Mode1

Merge

State
Machine

Software A

Mode3 F

Mode2 D
Mode2 E

B
C

Express signal and data processing algorithms,
parallelism, load balancing, fault tolerance and mode
control

Gedae, Inc.
www.gedae.com

...that Gedae transforms under user control...

Branch

Mode1

Merge

State
Machine

Transformed Graph

A

Mode3 F

Mode2 D

Mode2 E

B
Cq s r s

q s r

q s r

q s r

r
s r

s r

s r

s r

s r
s r

q

q

q

q

User can set optimization parameters that are
independent of the graph to guide transformation

Gedae, Inc.
www.gedae.com

...to operate efficiently on a virtual machine.

Branch
Merge

State
Machine

F

D

E

Cq s

q s

q s

q s

r

r

r

r
r

q

q

q

q

Mode1r s
s

Mode3

Mode2r

r

s

s

Br s

PE1 PE2 PE3 PE4 PE5

XBUS

BSP BSP BSP BSP BSP
RTK RTK RTK RTK RTK

Complete systems can be developed independent of
the target system without losing runtime efficiency

Mode2r s

Ar s

Gedae, Inc.
www.gedae.com

Gedae Language
• Gedae provides application information through

– modules with well-defined behavior
– ports with well-defined characteristics
– and manifest connectivity with explicit

sequential and parallel execution paths
• This information is implicit in most languages
• Gedae makes the information explicit

– over 50 different information expression
features

x_fird

in

C

out

mult

outa

Information provided by language allows Gedae to analyze
and efficiently implement algorithms

b

stream of
tokens

stream complex in[N](D);

tokens contain
complex data

tokens are a vector
with N elements

box requires D
input tokens.

D

Gedae, Inc.
www.gedae.com

Gedae Transformations
• The block diagram is transformed

using over 100 algorithms.
• The transformations establish the:

– Order of execution
– Queue sizes
– Granularities
– Memory layout
– Dynamic schedule parameters
– Data transfer types and

parameters
– Mode control

Functional
Specification

Heterogeneous HW

Virtual Machine

Detailed Model

Transformations

Implementation
Specification

Generation

Deployable Application

User
Gedae
Vendor

Key

The Gedae transformations build a detailed model of the deployed
application. Gedae uses that information to provide visibility

Gedae, Inc.
www.gedae.com

Gedae Virtual Machine (VM)

Vendor Components

Gedae
Library

Developer
Library

Multiprocessor Hardware

Static Memory and
Execution Schedules

Managed by the Gedae
Dynamic Scheduler

Gedae Components

Vi
rt

ua
l

M
ac

hi
ne

G
en

er
at

ed
A

pp
lic

at
io

n• Gedae provides the following
components:
– Command handler
– Dynamic scheduler
– Segmentation Support
– Primitive Support
– Visibility Support

• The vendor provides
– Inter-processor communications
– Optimized vector libraries
– Other basic services

The Gedae virtual machine makes applications
processor independent

Gedae, Inc.
www.gedae.com

Three Examples
• Real-Time Space-Time Adaptive Processing (RT-STAP)

– Miter benchmark graph
– Illustrates efficient parallel execution of large graph

• Multilevel Mode Graph
– Illustrates nested mode control with distributed state
– Dynamic data application

• Sonar Graph
– Illustrates large data reduction during processing

Each example illustrates features of the language,
transformations, and virtual machine

Gedae, Inc.
www.gedae.com

RT-STAP: Language

Families permit replicating box and data elements

Gedae, Inc.
www.gedae.com

RT-STAP: Language

• Instantiation constants control the size of the graph
• Routing boxes allow equation based connectivity

Gedae, Inc.
www.gedae.com

RT-STAP: Transformations
• User maps primitives to

physical processors

• Gedae transforms graph by
inserting send/receive
primitives to communicate
between partitions

• Gedae automatically creates
executables to run on each
processor

Different mappings can be tried without modifying the
graph – the needed transformation happens automatically

Gedae, Inc.
www.gedae.com

RT-STAP Transformations

• User can set transfer properties on send/recv pairs with Transfer
Table

• Transformations automatically set parameters to send/recv pairs
to communicate these properties to running application

User can guide transformations to optimize implementation

Gedae, Inc.
www.gedae.com

RT-STAP: Running on VM

Send/Recv webs show interprocessor communication
and uncover synchronization problems

Gedae, Inc.
www.gedae.com

RT-STAP: Running on VM

Memory Map Structure Display

Preplanned use of memory allows distributed runtime debugging

Gedae, Inc.
www.gedae.com

Mode Control: Language
• Branch boxes make mode

changes and mark segment
boundaries

• “Exclusive” branch outputs
show where resources can
be shared

• State shared between
modes is explicitly declared
in the graph

The Gedae primitive language
directly supports segmented
data processing, sharing of
resources, and distribution of
state

Gedae, Inc.
www.gedae.com

Mode Control: Language
Branch box copies input data stream
to one of a family of outputs based on
a control stream. Output is:

• Segmented - the box will add
segment boundaries to the output

• Dynamic - the box will state how
much data is produced on the output
at runtime.

• Exclusive - only one of the family of
F outputs gets data on any firing.
Allows sharing of resources and
state.

Name: cp_branchf_e
Input: stream ControlParamRec in;
Input: stream int c;
Local: int last;
Output: exclusive segmented dynamic stream

ControlParamRec [F]out;
Reset: { last = -1; }
Apply: {

int g,i;
int prdc = 0;
for (g=0; g<granularity; g++) {

int j = c[g];
if (last != j) {

if (0<=last && last<F) {
produce(out[last],prdc);
prdc = 0;
segment(out[last],SEGMENT_END);

}
last = j;

}
if (0<=j && j<F) {

*out++ = *in;
prdc++;

}
in++;

}
produce(out[last],prdc);

}

The Gedae extensible language
has no “built-in” primitives.
8000+ delivered primitives.
Users can add custom primitives

Gedae, Inc.
www.gedae.com

Mode Graph: Transformation

User can set partitioning, mapping, data transfer methods,
granularity, priority, queue sizes and schedule properties
from the group control dialog

Partition and Subschedule

Set Data Transfer
Methods

Set Static Schedule
Properties (Tasks)

Set Granualrity
and Priority

Map

Set Queue Size
and Properties

Gedae, Inc.
www.gedae.com

Mode Graph: Running on VM

• Each mode requires a
different number of
processors

• Branch boxes at one
level are responsible for
the dynamic distribution

VM runtime kernel enforces
dynamic data driven
execution. Send and receive
primitives and state transfer
primitives use BSP of virtual
machine to transfer data

Gedae, Inc.
www.gedae.com

Mode Graph: Running on VM

•Primitives to send and receive
state are automatically added
by transformations

•Messages generated by
Virtual Machine at mode
change boundaries efficiently
coordinate state transfers

Result is efficient transparent use of shared state on
distributed processing system

Gedae, Inc.
www.gedae.com

Sonar: Language

Sonar Graph creates low bandwidth output from high
bandwidth input data

Gedae, Inc.
www.gedae.com

Sonar: Language

inplace stream complex out[C](R) = in;

• Connectivity + Port Descriptions
gives information needed to
schedule graph

• mx_vx produces R=120 tokens
out for every 1 token in

• vx_multV box must fire 120 times
for each firing of the mx_vx box.

• vx_fft box fires one time for each
firing of vx_multV box

• Simple predetermined schedule
generated from graph and info
embedded in primitives

Static Schedule Timeline
1

1

120

120Fire at granularity
120, 1 time

mx_adjoin

mx_vx

vx_multV

vx_fft

Can create a multirate graph that has boxes firing at
different granularities

Gedae, Inc.
www.gedae.com

• User can place boxes in subschedules to strip-mine
the vector processing

• Allows use of fast memory
• Can reduce memory usage

Sonar: Transformation

Static Schedule Timeline
1

1

120

120

1

1
mx_adjoin

mx_vx

vx_multV

vx_fft

...

Subscheduled Timeline
Fire at granularity
1, 120 times

Fire at granularity
120, 1 time

Multirate graphs can be implemented using subscheduling
to improve speed and reduce memory usage

Gedae, Inc.
www.gedae.com

Sonar: Transformation
Auto-Subscheduling Tool

Schedule Information
Dialog

• User can put boxes into named
subschedules manually – but can be difficult

• Auto-Subscheduling Tool puts boxes in
subschedules automatically

• Finds nested sets of connected boxes
running at common granularities.

• Automatically sets subscheduling levels

Auto-subscheduling has reduced memory needed by graph
from 250 Mbytes to about 2.5 Mbytes - 100x improvement

Gedae, Inc.
www.gedae.com

Sonar: Running on VM

Multiple levels of subscheduling evident on Trace Table

Gedae, Inc.
www.gedae.com

Conclusion

• Gedae Block Diagram Language allows
simple expression of a wide range of
algorithms

• User optimization information can be added
without modifying block diagram

• 100+ transformations create efficient
executable application from language and
user information

• Application runs efficiently on Virtual Machine
• VM provides portability and visibility

Gedae, Inc.
www.gedae.com

HPEC 2004

Gedae: Auto Coding to a
Virtual Machine

Authors: William I. Lundgren,
Kerry B. Barnes, James W. Steed

Gedae, Inc.
www.gedae.com

What is Gedae?

Gedae is a block diagram language ...

Branch

Mode1

Merge

State
Machine

Software A

Mode3 F

Mode2 D
Mode2 E

B
C

Express signal and data processing algorithms,
parallelism, load balancing, fault tolerance and mode
control.

Gedae, Inc.
www.gedae.com

...that Gedae transforms under user control...

Branch

Mode1

Merge

State
Machine

Transformed Graph

A

Mode3 F

Mode2 D

Mode2 E

B
Cq s r s

q s r

q s r

q s r

r
s r

s r

s r

s r

s r
s r

q

q

q

q

User can set optimization parameters that are
independent of the graph to guide transformation

What is Gedae?

Gedae, Inc.
www.gedae.com

What is Gedae?

...to operate efficiently on a virtual machine.

Branch
Merge

State
Machine

F

D

E

Cq s

q s

q s

q s

r

r

r

r
r

q

q

q

q

Mode1r s
s

Mode3

Mode2r

r

s

s

Br s

PE1 PE2 PE3 PE4 PE5

XBUS

BSP BSP BSP BSP BSP
RTK RTK RTK RTK RTK

Complete systems can be developed independent of
the target system without losing runtime efficiency.

Mode2r s

Ar s

Gedae, Inc.
www.gedae.com

Gedae’s Structure
Functional

Specification

Heterogeneous HW

Virtual Machine

Detailed Model

Transformations

Implementation
Specification

Generation

Deployable Application

• The block diagram is transformed
using over 100 algorithms.

• The transformations establish the:
– Order of execution
– Queue sizes
– Granularities
– Memory layout
– Dynamic schedule parameters
– Data transfer types and

parameters
– Mode control

User
Gedae
Vendor

Key

The Gedae transformations build a detailed model of the deployed
application. Gedae uses that information to provide visibility.

	Precis:
	Agenda:
	Abstract:
	Poster:

